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Lecture 19 

Physics 404 

 

 We considered the free electrons in a metal like Cu.  Each Cu atom sits at a site in a lattice and 
gives up two electrons that are free to roam about the crystal.  The electrons are spin-1/2 Fermions and 
have strongly overlapping wavefunctions.  They must obey the Pauli exclusion principle, so that no two 
of them can occupy the same quantum state.  At zero temperature they occupy all the single particle-in-
a-box states starting from zero and going up to the highest occupied state, called the Fermi energy (  ). 

 If the electrons in a metal were classical particles in the dilute limit, we know from the last 

lecture that their total energy would be   
 

 
   by equipartition of energy.  Their heat capacity would 

be    
  

  
       , which is substantial and temperature independent.  However the electronic 

heat capacity of metals is observed to be much smaller than this and linear in temperature.  The 
discrepancy is explained by the quantum statistical mechanics of the Fermi-Dirac distribution. 

 At zero temperature all of the single particle states are occupied with exactly one electron up to 
the most energetic state, beyond which all the states are empty.  At finite temperature   only those 
electrons within about   of the chemical potential can be ‘promoted’ into empty states.  All of the other 
electrons at lower energies cannot acquire enough energy from the reservoir to find an un-occupied 
state.  Hence only a small fraction on the order of      of the electrons can actually absorb energy and 

find new states (For Cu         and          at room temperature, so 
 

  
      ).  This greatly 

limits the heat capacity of the electron gas.  As an estimate, the change in energy of the entire electron 
gas between     and temperature   is roughly 

                                                                  
 

  
     .  The heat 

capacity is    
  

  
     

 

  
, which is much smaller than      and linear in temperature. 

The Fermi energy can be calculated from the particle-in-a-box energy dependence on the triplet 

of integers           ,    
    

    
   

    
    

  , where   is the side length of the box and the three 

integers go from 1 to infinity.  The result is    
  

  
         , where       is the concentration.  

Using similar arguments, one can calculate the total energy of the Fermi gas and find   
 

 
   .  This is 

a substantial energy compared to the classical ideal gas (  
 

 
  ), since     . 

It is convenient to replace a sum over quantum numbers with an equivalent integral over 
energy.  For this reason we introduce the density of states     .  This allows us to change       to 

           .         is the number of states “s” with energy between   and     .  For Fermions, 

we found this to be      
 

    
  

  
 
   

    .  With the density of states, we are able to write the total 

number of particles as                  
 

 
, where          is the Fermi function.  We can write 

the total energy of the Fermi gas as                     
 

 
. 
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We also discussed the Fermi gas properties of electrons in a white dwarf star.  The situation for 
 

  
 is very similar to that of electrons in a metal, although the temperature and energy scales are much 

higher.  The white dwarf resists gravitational collapse in part because of a quantum mechanical 
‘degeneracy pressure’ arising from the Pauli exclusion principle and Fermi-Dirac statistics.  The pressure 

can be found from    
  

  
     

 

 
  

 

 
.  This pressure scales as  

 

 
 
   

, which means that the 

material will greatly increase its pressure as the concentration increases.  This pressure, along with the 
thermal pressure of the gas at finite temperature, balance the gravitational force acting on the star. 


